21. If the filter is in a linear phase, then the filter would have a mirror-image pole outside the unit circle for every pole inside the unit circle.
A. True
B. False
Answer: A
For a linear phase filter, we know that
H(z)=\(±z^{-N} H(z^{-1})\)
where z(-N) represents a delay of N units of time. But if this were the case, the filter would have a mirror image pole outside the unit circle for every pole inside the unit circle. Hence the filter would be unstable.
22. What is the order of operations to be performed in order to realize a linear phase IIR filter?
A. Passing x(-n) through a digital filter H(z)
B. Time reversing the output of H(z)
C. Time reversal of the input signal x(n)
D. Passing the result through H(z)
Answer: B
The order of operations to be performed in order to realize linear phase IIR filter
(i) Passing x(-n) through a digital filter H(z)
(ii) Time reversing the output of H(z)
(iii) Time reversal of the input signal x(n)
(iv) Passing the result through H(z)
If the restriction on physical reliability is removed, it is possible to obtain a linear phase IIR filter, at least in principle. This approach involves performing a time-reversal of the input signal x(n), passing x(-n) through a digital filter H(z), time reversing the output of H(z), and finally, passing the result through H(z) again.
23. When an application requires a linear phase filter, it should be an FIR filter.
A. True
B. False
Answer: A
The signal processing is computationally cumbersome and appears to offer no advantages over linear phase FIR filters. Consequently, when an application requires a linear phase, it should be an FIR filter.
24. An analog filter can be converted into a digital filter by approximating the differential equation by an equivalent difference equation.
A. True
B. False
Answer: A
One of the simplest methods for converting an analog filter into a digital filter is to approximate the differential equation by an equivalent difference equation.
25. Which of the following is the backward difference for the derivative of y(t) with respect to ‘t’ for t=nT?
A. [y(n)+y(n+1)]/T
B. [y(n)+y(n-1)]/T
C. [y(n)-y(n+1)]/T
D. [y(n)-y(n-1)]/T
Answer: D
For the derivative dy(t)/dt at time t=nT, we substitute the backward difference [y(nT)-y(nT-T)]/T. Thus
dy(t)/dt =[y(nT)-y(nT-T)]/T
=[y(n)-y(n-1)]/T
where T represents the sampling interval and y(n)=y(nT).
26. Which of the following is true relation among s-domain and z-domain?
A. s=(1+z-1)/T
B. s=(1+z )/T
C. s=(1-z-1)/T
D. None of the mentioned
Answer: C
The analog differentiator with output dy(t)/dt has the system function H(s)=s, while the digital system that produces the output [y(n)-y(n-1)]/T has the system function H(z) =(1-z-1)/T. Thus the relation between s-domain and z-domain is given as
s=(1-z-1)/T.
27. What is the second difference that is used to replace the second order derivate of y(t)?
A. [y(n)-2y(n-1)+y(n-2)]/T
B. [y(n)-2y(n-1)+y(n-2)]/T2
C. [y(n)+2y(n-1)+y(n-2)]/T
D. [y(n)+2y(n-1)+y(n-2)]/T2
Answer: B
We know that dy(t)/dt =[ y(n)-y(n-1)]/T
The second difference that is used to replace theSecond order derivative of y(t) is d(dy(t)/dt)/dt=[y(n)-2y(n-1)+y(n-2)]/T2.
28. Which of the following in z-domain is equal to s-domain of second order derivate?
29. If s=jΩ and if Ω varies from -∞ to ∞, then what is the corresponding locus of points in the z-plane?
A. Circle of radius 1 with center at z=0
B. Circle of radius 1 with center at z=1
C. Circle of radius 1/2 with center at z=1/2
D. Circle of radius 1 with center at z=1/2
Answer: C
We know that
s=(1-z-1)/T
=> z=1/(1-sT)
Given s= jΩ => z = 1/(1- jΩT)
Thus from the above equation if Ω varies from -∞ to ∞, then the corresponding locus of points in the z-plane is a circle of radius 1/2 with a center at z=1/2.
30. Which of the following mapping is true between the s-plane and z-domain?
A. Points in LHP of the s-plane into points inside the circle in the z-domain
B. Points in RHP of the s-plane into points outside the circle in the z-domain
C. Points on the imaginary axis of the s-plane into points onto the circle in z-domain
D. All of the mentioned
Answer: D
The mapping is true between the s-plane and z-domain when
A. Points in LHP of the s-plane into points inside the circle in the z-domain
B. Points in RHP of the s-plane into points outside the circle in the z-domain
C. Points on an imaginary axis of the s-plane into points onto the circle in z-domain
31. The mapping is restricted to the design of low pass filters and bandpass filters having relatively small resonant frequencies.
A. True
B. False
Answer: A
The possible location of poles of the digital filter are confined to relatively small frequencies and as a consequence, the mapping is restricted to the design of low pass filters and bandpass filters having relatively small resonant frequencies.
32. Which of the following filter transformation is not possible?
A. High pass analog filter to low pass digital filter
B. High pass analog filter to high pass digital filter
C. Low pass analog filter to low pass digital filter
D. None of the mentioned
Answer: B
We know that only low pass and bandpass filters with low resonant frequencies in the digital can be designed. So, it is not possible to transform a high pass analog filter into a corresponding high pass digital filter.
33. It is possible to map the jΩ-axis into the unit circle.
A. True
B. False
Answer: A
By proper choice of the coefficients of {αk}, it is possible to map the jΩ-axis into the unit circle.
34. By impulse invariance method, the IIR filter will have a unit sample response h(n) that is the sampled version of the analog filter.
A. True
B. False
Answer: A
In the impulse invariance method, our objective is to design an IIR filter having a unit sample response h(n) that is the sampled version of the impulse response of the analog filter. That is
h(n)=h(nT); n=0,1,2…
where T is the sampling interval.
35. If a continuous time signal x(t) with spectrum X(F) is sampled at a rate Fs=1/T samples per second, the spectrum of the sampled signal is _____________
A. Non-periodic repetition
B. Non-periodic non-repetition
C. Periodic repetition
D. None of the mentioned
Answer: C
When a continuous-time signal x(t) with spectrum X(F) is sampled at a rate Fs=1/T samples per second, the spectrum of the sampled signal is periodic repetition.
36. If a continuous-time signal x(t) with spectrum X(F) is sampled at a rate Fs=1/T samples per second, then what is the scaled spectrum?
A. X(F)
B. Fs.X(F)
C. X(F)/Fs
D. None of the mentioned
Answer: B
When a continuous-time signal x(t) with spectrum X(F) is sampled at a rate Fs=1/T samples per second, the spectrum of the sampled signal is a periodic repetition of the scaled spectrum Fs.X(F).
37. When σ=0, then what is the condition on ‘r’?
A. 0<r<1
B. r=1
C. r>1
D. None of the mentioned
Answer: B
We know that z=esT
Now substitute s=σ+jΩ and z=r.ejω, which represents ‘z’ in the polar form
On equating both sides, we get
r=eσT
Thus when σ=0, the value of ‘r’ varies from r=1.
38. What is the equation for normalized frequency?
A. F/Fs
B. F.Fs
C. Fs/F
D. None of the mentioned
Answer: A
In the impulse invariance method, the normalized frequency f is given by
f= F/Fs.
39. Aliasing occurs if the sampling rate Fs is more than twice the highest frequency contained in X(F).
A. True
B. False
Answer: B
Aliasing occurs if the sampling rate Fs is less than twice the highest frequency contained in X(F).
40. The frequency response given in the above question is for a low-pass digital filter.
A. True
B. False
Answer: A
The above-given frequency response depicts the frequency response of a low-pass analog filter and the frequency response of the corresponding digital filter.